Part Number Hot Search : 
D2W115CD TSM1212 1EC25 SFM16MH D8025 1N5243 NTE56033 6846AL
Product Description
Full Text Search
 

To Download TS91206 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS912
Rail-to-Rail CMOS Dual Operational Amplifier

Rail-to-rail input and output voltage ranges Single (or dual) supply operation from 2.7V to 16V Extremely low input bias current: 1pA typ. Low input offset voltage: 2mV max. Specified for 600 and 100 loads Low supply current: 200A/ampli (VCC = 3V) Latch-up immunity ESD tolerance: 3kV Spice macromodel included in this specification D SO-8 (Plastic Micropackage) N DIP-8 (Plastic Package)
Description
The TS912 is a rail-to-rail CMOS dual operational amplifier designed to operate with a single or dual supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. The output reaches:

Pin connections (top view)
Output 1 Inverting Input 1 Non-inverting Input 1 V CC 1 2 3 4
+ + + 8V CC
7 Output 2 6 Inverting Input 2 5 Non-inverting Input 2
VCC- +30mV, VCC+ -40mV, with RL = 10k VCC- +300mV, VCC+ -400mV, with R L = 600
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200A/amp (VCC = 3V). Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit.
February 2006
Rev. 4
1/19
www.st.com
19
Order Codes
TS912
1
Order Codes
Part Number Temperature Range Package DIP8 SO-8 DIP8 -40, +125C SO-8 SO-8 SO-8 (automotive grade level) Tube or Tape & Reel Packing Tube Tube or Tape & Reel Tube Marking TS912IN 912I TS912AIN 912AI 912BI 912IY 912AIY
TS912IN TS912ID/IDT TS912AIN TS912AID/AIDT TS912BID/BIDT TS912IYD/IYDT TS912AIYD/AIYDT
2/19
TS912
Absolute Maximum Ratings and Operating Conditions
2
Absolute Maximum Ratings and Operating Conditions
Key parameters and their absolute maximum ratings
Parameter Supply voltage
(1)
Table 1.
Symbol VCC Vid Vi Iin Io Toper Tstg Tj Rthja
Value 18 18 -0.3 to 18 50 130 -40 to + 125 -65 to +150 150
(4)
Unit VCC Vid Vi Iin Io Toper Tstg Tj C/W
Differential Input Voltage (2) Input Voltage
(3)
Current on Inputs Current on Outputs Operating Free Air Temperature Range TS912I/AI/BI Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient DIP8 SO-8 Thermal Resistance Junction to Case DIP8 SO-8 HBM: Human Body Model(5)
85 125 41 40 3 200 1500
Rthjc
C/W kV V kV
ESD
MM: Machine
Model(6)
CDM: Charged Device Model
1. All voltages values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. These values are typical. 5. Human body model, 100pF discharged through a 1.5k resistor into pin of device. 6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5), into pin to pin of device.
Table 2.
Operating conditions
Parameter Supply voltage Common Mode Input Voltage Range Value 2.7 to 16 VCC- -0.2 to VCC+ +0.2 Unit V V
Symbol VCC Vicm
3/19
Typical Application Information
TS912
3
Figure 1.
Typical Application Information
Schematic diagram (1/2 TS912)
VCC
Non-inverting Input
Internal Vref Inverting Input Output
VCC
4/19
Electrical Characteristics
TS912
4
Electrical Characteristics
Table 3.
Symbol
VCC+ = 3V, Vcc- = 0V, RL, CL connected to V CC/2, Tamb = 25C (unless otherwise specified)
Parameter Input Offset Voltage (Vic = Vo = VCC/2)TS912 TS912A TS912B Tmin. Tamb Tmax.TS912 TS912A TS912B Input Offset Voltage Drift Input Offset Current (1) Tmin. Tamb Tmax. Input Bias Current 1) Tmin. Tamb Tmax. Supply Current (per amplifier, A VCL = 1, no load) Tmin. Tamb Tmax. Common Mode Rejection Ratio Vic = 0 to 3V, Vo = 1.5V Supply Voltage Rejection Ratio (VCC+ = 2.7 to 3.3V, Vo = VCC/2) Large Signal Voltage Gain (RL = 10k, Vo = 1.2V to 1.8V) Tmin. Tamb Tmax. High Level Output Voltage (Vid = 1V) RL = 100k RL = 10k RL = 600 RL = 100 Tmin. Tamb Tmax.RL = 10k RL = 600 Low Level Output Voltage (Vid = -1V) RL = 100k RL = 10k RL = 600 RL = 100 Tmin. Tamb Tmax.RL = 10k RL = 600 Output Short Circuit Current (V id = 1V) Source (V o = VCC-) Sink (V o = VCC+) Gain Bandwidth Product (A VCL = 100, RL = 10k, CL = 100pF, f = 100kHz) Slew Rate (A VCL = 1, RL = 10k, CL = 100pF, Vi = 1.3V to 1.7V) Slew Rate (A VCL = 1, RL = 10k, CL = 100pF, Vi = 1.3V to 1.7V) 20 20 50 3 2 2.95 2.9 2.3 2.8 2.1 30 300 900 50 70 400 mV 100 600 40 40 0.8 0.4 0.3 mA 5 1 1 200 100 200 150 300 300 400 Min. Typ. Max. 10 5 2 12 7 3 Unit
Vio
mV
Vio Iio Iib ICC CMR SVR Avd
V/C pA pA A dB dB V/mV
70 80 10
VOH
2.96 2.6 2
V
VOL
Io
GBP SR+ SR-
MHz V/s V/s
5/19
Electrical Characteristics
TS912
Table 3.
Symbol m en
VCC+ = 3V, Vcc- = 0V, RL, CL connected to V CC/2, Tamb = 25C (unless otherwise specified)
Parameter Phase Margin Equivalent Input Noise Voltage (Rs = 100, f = 1kHz) Min. Typ. 30 30 Max. Unit Degrees nV/Hz
1. Maximum values including unavoidable inaccuracies of the industrial test
Table 4.
Symbol
VCC+ = 5V, Vcc- = 0V, R L, CL connected to V CC/2, Tamb = 25C (unless otherwise specified)
Parameter Input Offset Voltage (Vic = Vo = V CC/2)TS912 TS912A TS912B Tmin. Tamb T max.TS912 TS912A TS912B Input Offset Voltage Drift Input Offset Current Tmin. Tamb T max. Input Bias Current 1) Tmin. Tamb T max. Supply Current (per amplifier, A VCL = 1, no load) Tmin. Tamb T max. Common Mode Rejection Ratio Vic = 1.5 to 3.5V, V o = 2.5V Supply Voltage Rejection Ratio (V CC+ = 3 to 5V, V o = VCC/2) Large Signal Voltage Gain (R L = 10k, Vo = 1.5V to 3.5V) Tmin. Tamb T max. High Level Output Voltage (Vid = 1V) RL = 100k RL = 10k RL = 600 RL = 100 Tmin. Tamb T max.RL = 10k RL = 600 Low Level Output Voltage (V id = -1V) RL = 100k RL = 10k RL = 600 RL = 100 Tmin. Tamb T max.RL = 10k RL = 600 Output Short Circuit Current (V id = 1V) Source (V o = VCC -) Sink (Vo = VCC+) Gain Bandwidth Product (A VCL = 100, RL = 10k, CL = 100pF, f = 100kHz) 45 45 60 55 10 7 4.95 4.9 4.25 4.8 4.1 40 350 1400 50 100 500 mV 150 750 65 65 1 mA
(1)
Min.
Typ.
Max. 10 5 2 12 7 3
Unit
Vio
mV
Vio Iio Iib ICC CMR SVR Avd
5 1 1 230 100 200 150 300 350 450
V/C pA pA A dB dB V/mV
85 80 40
VOH
4.95 4.55 3.7
V
VOL
Io
GBP
MHz
6/19
Electrical Characteristics VCC+ = 5V, Vcc- = 0V, R L, CL connected to V CC/2, Tamb = 25C (unless otherwise specified)
Parameter Slew Rate (AVCL = 1, R L = 10k, CL = 100pF, Vi = 1V to 4V) Slew Rate (AVCL = 1, R L = 10k, CL = 100pF, Vi = 1V to 4V) Equivalent Input Noise Voltage (R s = 100, f = 1kHz) Min. Typ. 0.8 0.6 30 120 30 Max.
TS912
Table 4.
Symbol SR+ SRen
Unit
V/s nV/Hz dB Degrees
VO1/V O2 Channel Separation (f = 1kHz) m Phase Margin
1. Maximum values including unavoidable inaccuracies of the industrial test
Table 5.
Symbol
VCC+ = 10V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Parameter Input Offset Voltage (Vic = Vo = VCC/2)TS912 TS912A TS912B Tmin. Tamb Tmax.TS912 TS912A TS912B Input Offset Voltage Drift Input Offset Current Tmin. Tamb Tmax. Input Bias Current 1) Tmin. Tamb Tmax. Supply Current (per amplifier, A VCL = 1, no load) Tmin. Tamb Tmax. Common Mode Rejection Ratio Vic = 3 to 7V, Vo = 5V Vic = 0 to 10V, Vo = 5V Supply Voltage Rejection Ratio (VCC + = 5 to 10V, Vo = VCC/2) Large Signal Voltage Gain (RL = 10k, Vo = 2.5V to 7.5V) Tmin. Tamb Tmax. High Level Output Voltage (Vid = 1V) RL = 100k RL = 10k RL = 600 RL = 100 Tmin. Tamb Tmax.RL = 10k RL = 600 60 50 60 15 10 9.95 9.85 9 9.8 8.8
(1)
Min.
Typ.
Max. 10 5 2 12 7 3
Unit
Vio
mV
Vio Iio Iib ICC
5 1 1 400 100 200 150 300 600 700
V/C pA pA A
CMR
90 75 90 50
dB
SVR Avd
dB V/mV
VOH
9.95 9.35 7.8
V
7/19
Electrical Characteristics VCC+ = 10V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Parameter Low Level Output Voltage (Vid = -1V) RL = 100k RL = 10k RL = 600 RL = 100 Tmin. Tamb Tmax.RL = 10k RL = 600 Output Short Circuit Current (V id = 1V) Source (V o = VCC-) Sink (V o = VCC+) Gain Bandwidth Product (A VCL = 100, RL = 10k, CL = 100pF, f = 100kHz) Slew Rate (A VCL = 1, RL = 10k, CL = 100pF, Vi = 2.5V to 7.5V) Slew Rate (A VCL = 1, RL = 10k, CL = 100pF, Vi = 2.5V to 7.5V) Phase Margin Equivalent Input Noise Voltage (Rs = 100, f = 1kHz) Total Harmonic Distortion (A VCL = 1, RL = 10k, CL = 100pF, Vo = 4.75V to 5.25V, f = 1kHz) Input Capacitance 45 50 Min. Typ. Max. 50 150 800 150 900 65 75 1.4 1.3 0.8 40 30 0.02 1.5
TS912
Table 5.
Symbol
Unit
VOL
50 650 2300
mV
Io
mA
GBP SR+ SRm en THD Cin
MHz V/s
Degrees nV/Hz % pF
1. Maximum values including unavoidable inaccuracies of the industrial test
8/19
Electrical Characteristics Figure 2. Supply current (each amplifier) vs. supply voltage Figure 3.
TS912 High level output voltage vs. high level output current
SUPPLY CURRENT, I CC ( m A)
600
OUTPUT VOLTAGE, VOH (V)
500 400 300 200 100
Tamb = 25C A VCL = 1 V O = VCC / 2
5 4 3 2 1 0
T amb = 25 C V id = 100mV VCC = +5V
VCC = +3V
0
4
8
12
16
-70
-56
-42
-28
-14
0
SUPPLY VOLTAGE, V CC (V)
OUTPUT CURRENT, I OH (mA)
Figure 4.
Low level output voltage vs. low level output current
Figure 5.
Input bias current vs. temperature
INPUT BIAS CURRENT, I ib (pA)
5
OUTPUT VOLTAGE, V OL (V)
100
T amb = 25 C V id = -100mV
4 3 2 1
V CC = 10V V i = 5V No load
VCC = +3V VCC = +5V
10
0
14
28
42
56
70
1
25
50
75
100
125
OUTPUT CURRENT, I OL (mA)
TEMPERATURE, T amb ( C)
Figure 6.
High level output voltage vs. high level output current
Figure 7.
Low level output voltage vs. low level output current
OUTPUT VOLTAGE, VOH (V)
16 12 8 4 0 -70
T amb = 25 C Vid = 100mV
VCC = +16V
OUTPUT VOLTAGE, VOL (V)
20
10 8 6 4 2
T amb = 25 C V id = -100mV V CC = 16V V CC = 10V
VCC = +10V
-56
-42
-28
-14
0
0
14
28
42
56
70
OUTPUT CURRENT, IOH (mA)
OUTPUT CURRENT, I OL (mA)
9/19
Electrical Characteristics Figure 8. Gain and phase vs. frequency Figure 9.
TS912 Gain bandwidth product vs. supply voltage
50 40 GAIN (dB) 30 20 10 0 -10 PHASE
Tamb = 25C VCC = 10V R L = 10k W C L = 100pF A VCL = 100
GAIN BANDW. PROD., GBP (kHz)
GAIN
Phase Margin
PHASE (Degrees)
0 45 90 135 180
1800 1400 1000 600 200
Tamb = 25C R L = 10kW C L = 100pF
Gain Bandwidth Product
10
2
10
3
10 10 10 FREQUENCY, f (Hz)
4
5
6
10
7
0
4
8
12
16
SUPPLY VOLTAGE, VCC (V)
Figure 10. Phase margin vs. supply voltage
PHASE MARGIN, f m (Degrees)
60 50 40 30 20 0 4 8 12 16 Tamb = 25C R L = 10kW C L = 100pF
Figure 11. Gain and phase vs. frequency
50 40
GAIN (dB)
GAIN PHASE
Tamb = 25C V CC = 10V R L = 600W C L = 100pF A VCL = 100
30 20 10 0 10
45
Phase Margin Gain Bandwidth Product
90 135 180
10
2
10
3
SUPPLY VOLTAGE, VCC (V)
10 10 10 FREQUENCY, f (Hz)
4
5
6
10
7
Figure 12. Gain bandwidth product vs. supply voltage
GAIN BANDW. PROD., GBP (kHz) 1800 1400 1000 600 200 0 4 8 12 16
SUPPLY VOLTAGE, VCC (V)
Figure 13. Phase margin vs. supply voltage
PHASE MARGIN, fm (Degrees)
60 50 40 30 20 0 4 8 12 16 Tamb = 25C R L = 600W C L = 100pF
Tamb = 25C R L = 600W C L = 100pF
SUPPLY VOLTAGE, VCC (V)
10/19
PHASE (Degrees)
0
Electrical Characteristics Figure 14. Input voltage noise vs. frequency
TS912
EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz)
150
100
VCC = 10V Tamb = 25C RS = 100W
50
0 10
100
1000
10000
FREQUENCY (Hz)
11/19
Macromodels
TS912
5
5.1
Macromodels
Important note concerning this macromodel
Please consider following remarks before using this macromodel. - All models are a trade-off between accuracy and complexity (i.e. simulation time). - Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. - A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. - Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way. In Section 5.2 and Section 5.4, the electrical characteristics resulting from the use of these macromodels are presented.
5.2
Table 6.
Electrical characteristics from macromodelization
Electrical characteristics resulting from macromodel simulation at V CC+ = 3V, V CC- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Conditions Value 0 RL = 10k No load, per operator 10 200 -0.2 to 3.2 RL = 10k RL = 10k VO = 3V VO = 0V RL = 10k, C L = 100pF RL = 10k, C L = 100pF 2.96 30 40 40 0.8 0.3 Unit mV V/mV A V V mV mA mA MHz V/s
Symbol Vio Avd ICC Vicm VOH VOL Isink Isource GBP SR
5.3
Macromodel code
Applies to: TS912 (VCC = 3V) ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT
12/19
Macromodels
TS912 * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS912_3 1 3 2 4 5 (analog) ***************************************************** ***** .MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 1.271505E+01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.125860E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 5.000000E+00 FCN 5 4 VOFN 5.000000E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 2.750000E+02 FIN 5 19 VOFN 2.750000E+02 RG1 19 5 1.916825E+05 RG2 19 4 1.916825E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.3E+03 HZTN 5 30 VOFN 1.3E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800 VIPM 28 4 150 HONM 21 27 VOUT 3800 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 75 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.724 HSCP 68 25 VSCP1 0.8E8 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+08 VSCTHP 60 61 0.0875 ** VSCTHP = le seuil au dessus de vio * 500 ** c.a.d 275U-000U dus a l'offset DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.55 ** VSCTHN = le seuil au dessous de vio * 2000
13/19
Macromodels ** c.a.d -375U-000U dus a l'offset ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
TS912
5.4
Table 7.
Electrical characteristics from macromodelization
Electrical characteristics resulting from macromodel simulation at V CC+ = 5V, V CC- = 0V, RL, CL connected to VCC/2, Tamb = 25C (unless otherwise specified)
Conditions Value 0 RL = 10k No load, per operator 50 230 -0.2 to 5.2 RL = 10k RL = 10k VO = 5V VO = 0V RL = 10k, C L = 100pF RL = 10k, C L = 100pF 4.95 40 65 65 1 0.8 Unit mV V/mV A V V mV mA mA MHz V/s
Symbol Vio Avd ICC Vicm VOH VOL Isink Isource GBP SR
5.5
Macromodel code
Applies to: TS912 (VCC = 5V) ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TS912_5 1 3 2 4 5 (analog) ***************************************************** ***** .MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.322092E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.498970E-08 DINN 17 13 MDTH 400E-12
14/19
Macromodels VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 5.750000E+00 FCN 5 4 VOFN 5.750000E+00 ISTB0 5 4 500N * AMPLIFYING STAGE FIP 5 19 VOFP 4.400000E+02 FIN 5 19 VOFN 4.400000E+02 RG1 19 5 4.904961E+05 RG2 19 4 4.904961E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.8E+03 HZTN 5 30 VOFN 1.8E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800 VIPM 28 4 230 HONM 21 27 VOUT 3800 VINM 5 27 230 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 82 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.724 HSCP 68 25 VSCP1 0.8E+08 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+08 VSCTHP 60 61 0.0875 ** VSCTHP = le seuil au dessus de vio * 500 ** c.a.d 275U-000U dus a l'offset DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.55 ** VSCTHN = le seuil au dessous de vio * 2000 ** c.a.d -375U-000U dus a l'offset ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
TS912
15/19
Package Mechanical Data
TS912
6
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK (R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
6.1
DIP-8 Package
Plastic DIP-8 MECHANICAL DATA
mm. DIM. MIN. A a1 B B1 b b1 D E e e3 e4 F I L Z 0.44 3.3 1.6 0.017 8.8 2.54 7.62 7.62 7.1 4.8 0.130 0.063 0.38 0.7 1.39 0.91 0.5 0.5 9.8 0.346 0.100 0.300 0.300 0.280 0.189 0.015 1.65 1.04 TYP 3.3 0.028 0.055 0.036 0.020 0.020 0.386 0.065 0.041 MAX. MIN. TYP. 0.130 MAX. inch
P001F
16/19
Package Mechanical Data
TS912
6.2
SO-8 Package
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
8 (max.)
0.04
0016023/C
17/19
Revision History
TS912
7
Table 8.
Date
Revision History
Document revision history
Revision 1 2 First Release 1 - PPAP references inserted in the datasheet see Table : on page 1 2 - ESD protection inserted in Table l: Key parameters and their absolute maximum ratings on page 2 The following changes were made in this revision: - Some errors in the Order Codes table was corrected on page 1. - Reorganization of Chapter 5: Macromodels on page 12. - Parameters added in Table 1. on page 3 (Tj, ESD, Rthja, Rthjc). Changes
Dec. 2001 July 2005
Oct. 2005 Feb. 2006
3 4
18/19
TS912
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
19/19


▲Up To Search▲   

 
Price & Availability of TS91206

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X